[作成中]速さと比の基本まとめ

中学受験生の小5・小6で「速さと比」が苦手というのはあなただけではありません。

「速さと比」は受験算数の中でも一番難しい分野なので苦手なのもしょうがない!

ただ「速さと比」を使った問題はよく出題されるので、入試までには使えるようになっておいた方が良いのも確かです…

ただでさえ難しい「速さと比」なので、自分のペースで一つ一つ身につけていきましょう。

この記事では「速さと比」の基本になる「1人の直線上の速さと比」について東大卒講師歴20年の図解講師「そうちゃ」が分かりやすく説明します。

記事を読んで真似すれば「速さと比」への苦手意識は消えて、次のステップへ進みたくなるでしょう♪

目次をクリックして好きな場所にジャンプできます。

スポンサーリンク

前提事項

「速さと比」の前提として「速さ」と「比」が分かるようにしておきましょう。

速さの復習

速さで使う公式はこれだけ。

速さの三公式

➀:道のり=速さ×時間

➁:速さ=道のり÷時間

➂:時間=道のり÷速さ
速さの三公式。道のり、速さ、時間の関係図

単位の変更が必要になることがあります。

単位時間の変更

◆単位時間を大きくする(→)と速さは60倍

◇単位時間を小さくする(←)と速さは160

速さの単位の変更(単位時間の変換)の関係図

詳しくは「速さの基本」を見て下さい。

比の復習

 

 

詳しくは、姉妹サイト「そうちゃ式 新1号館」の「比の基本」を見て下さい。

「速さと比」の意味

速さでは「速さ」「時間」「道のり」の3つの数値が出てきます。このうち1つを固定すると、のこりの2つが比例(比が同じ)または反比例(逆比)の関係になります。
3つの数値に応じてパターンは3つあります。まずこれらを全部「言える」ように練習します。

この3つのパターンを見ていきましょう

3つのパターン

速さが一定の場合

「速さが等しい」→「時間と道のりの比が等しい」

これは、誰かが一定の速さが歩いているような場合で「長い時間歩けば歩くほど進む距離も長くなる」ことを表現しています(当たり前の話ですね)。

例えば、9時に自宅から歩き出した人が9時6分にコンビニの前を通り過ぎ、9時16分に駅に着いた場合

家からコンビニまで6分、コンビニから駅までは10分なので「家からコンビニまで」と「コンビニから駅まで」の時間の比は6:10=3:5になって、距離の比も3:5になります。

家からコンビニが300mの時、家から駅までを?mとすると、300:?=3:3+5=3:8になるので、?=300×8÷3=800mと分かります。

確認テスト

 

時間が一定の場合

「時間が等しい」→「速さと道のりの比が等しい」

これは、速さが異なる2人の人がヨーイドンで走りはじめストップで止まる(あるいは二人の様子を写真を取る)場合で「速い人ほど進む距離も長くなる」ことを表現しています(当たり前ですね)。

例えば、スタートラインからAは分速300mでBは分速500mで同時に走りだして何秒後かに「ストップ!」の声で立ち止まったり、写真を撮影した場合です。

2人の速さの比は300:500=3:5なので、2人が進んだ距離の比も3:5になります。

Aが立ち止まったのがスタートから40m地点の時、Bの距離を?mとすると、?:40=3:5なので ?=40×3÷5=24m地点と分かります。

確認テスト

道のりが一定の場合

「道のりが等しい」→「速さと時間の比が逆になる」

これは、速さが違う2人が同じ道のりを進むような場合で「速ければ速いほど、かかる時間は短くなる」ことを表現しています(当然ですね)。

このパターンだけ関係が逆転する(逆比になる)ことに注意して下さい。

例えば、家から学校へ普段は分速60mで行っている人が今日は分速100mで行った場合です。

普段と今日で速さの比は60:100=3:5なので、かかる時間は逆比で5:3になります。

普段学校まで6分かかっていた場合、今日の時間を?分とすると 6:?=5:3 になるので、?=3×6÷5=3と3/5分=3分36秒 と分かります。

確認テスト

速さと比のダイヤグラム

ダイヤグラムの復習

ダイヤグラム

→行動をグラフにしたもの

●グラフの縦軸は道のり、横軸は時間を表す

●右上がりは出発地から遠ざかる動きを、
右下がりは出発地に戻る動きを表す。

●急な坂は速度が大きいことを、
ゆるい坂は速度が小さいことを表す。
平らな部分は止まっていることを表す

◆速さはグラフ上に表れないので、
2点の時間差・距離差を使って計算で求める

詳しくは「速さの基本」内「ダイヤグラム」を見て下さい。

速さが一定の場合

➊「速さが等しい」→「一本のダイヤグラムを横軸の時間の比が3:5になるように区切ると縦軸の道のりも3:5になる」
これは相似の性質と同じです(「富士山型」相似のパターンが見えますか?)

時間が一定の場合

➋「時間が等しい」→「同じ横幅の2本のダイヤグラムの縦幅が3:5になる」
ここにも富士山型の相似ができていて、速い方の人がゴールしたときの遅い方の人の位置を相似の問題で出せます。

道のりが一定の場合

➌「道のりが等しい」→「同じ縦幅の2本のダイヤグラムの横幅が3:5になる」

比を使った速さの問題

速さの乗除

 

平均の速さ

 

速さのつるかめ算

 

 

ちょっと宣伝(そうちゃ式オリジナル教材)

歴史が苦手な小6受験生のために教材を作りました。
興味がある方は「歴史が苦手な人もそうちゃ式年表プリントでリスタート!」を御覧ください。

中学受験でお悩みの方へ

爽茶そうちゃ
いつもお子さんのためにがんばっていただき、ありがとうございます。
受験に関する悩みはつきませんね。
「中学受験と高校受験とどちらがいいの?」「塾の選び方は?」「途中から塾に入っても大丈夫?」「塾の成績・クラスが下がった…」「志望校の過去問が出来ない…」など
様々なお悩みへのアドバイスを記事にまとめたので参考にして下さい。
もしかしたら、自分だけで悩んでいると煮詰まってしまい、事態が改善できないかもしれません。講師経験20年の「そうちゃ」に相談してみませんか?対面/オンラインでの授業/学習相談を受け付けているので、ご利用下さい。
最後まで読んでいただきありがとうございました♪この記事があなたの役に立てたなら嬉しいです!
タイトルとURLをコピーしました